Advances in three-dimensional cell culture in drug research, discovery and biologic manufacture

Richard M. Eglen, PhD VP & GM Corning Life Sciences

Founded: **1851**

CORN

Headquarters: Corning, New York

Employees: ~46,000 worldwide

2017 Core Sales: **\$10.3** billion (at rate of 107 ¥/\$)

Fortune 500 Ranking (2018): **293**

Corning Incorporated is one of the world's leading innovators in materials science. For more than 165 years, Corning has applied its unparalleled expertise in glass science, ceramic science, and optical physics to develop products and processes that have transformed industries and enhanced people's lives.

© 2018 Corning Incorporated

We have a rich history of driving innovation in cell culture surfaces, all critical to ex vivo cell growth

Overview of 3D cell culture

Increased biological relevance:

A major goal for research & drug discovery technologies

3D culture drives cells to a natural phenotype

2D culture

CORNING

Knight and Przyborski, 2015, J. Anat. 227:746.

© 2018 Corning Incorporated 6

Cells and their microenvironment

3D cell spheroids: reflect cell microenvironment in vivo

PYREX

Hirschhaeuser, et al., 2010, J. Biotechnol. 148(1):3-15.

FALCON AXYGEN

CORNING

HT-29 monolayer

HT-29 multicellular spheroids

HT-29 single spheroid per well

© 2018 Corning Incorporated

Colon cancer cells in 2D and 3D culture

LS174T, HT29, SW620, HCT116, Caco-2, and DLD-1 colon cancer cells were grown as monolayers or spheroids (3000 cells/spheroid). 48 h, cells and spheroids were analyzed.

Riedl, et al., 2017, J Cell Sci. 130:203.

Decrease of RPS6 phosphorylation from outside to inner core of DLD-1 spheroids

Riedl, et al., 2017, J Cell Sci. 130:203.

FALCON AXYGEN PYREX

Colon cancer cells in 2D and 3D culture

PYREX

CORNING | FALCON AXYGEN

Scale bars 20 µm

Riedl, et al., 2017, J Cell Sci. 130:203.

11

3D cell spheroids and screening assays

3D cell culture: emerging applications

PYREX

CORNING | FALCON AXYGEN

nalysis	Provides large relevant materials for genetic and cellular research	
ound ning	Anti-oncologic compound screening against patient tumor tissue; preclinical drug ADME/Tox	
nting & hking	Building blocks for 3D printing of multicellular tissues, organoids; tissue regeneration	
nerapy	Optimize therapeutic effects delivered as spheroids/cell aggregates (e.g. MSC, islets)	
erapy	Therapeutics released by cells, patient treatment (e.g. exosomes)	

Anchorage-dependent (Scaffold-based)

Biological Hydrogels

• Corning[®] Matrigel[®]

Synthetic Hydrogels

Non-natural

- Polyethylene Glycol (PEG)
- Polylactic Acid (PA)
- Polyglycolic Acid (PGA) •

Natural

- Hyaluronic Acid (HA)
- Peptides

3D cell culture: cell spheroid applications

Microplates (96-, 384-, 1536-well)

- Drug discovery
- Drug development

In vitro toxicity models (increased *in vivo* predictivity)

Large scale vessels

- Vaccine production
- Biologics production

- Embryonic bodies
- Tissue engineering
- MSC therapy

3D cell culture: spheroid microplates

- Culture and assay in same well
- Ultra-Low Attachment surface coating
- Single, uniform-sized spheroids per well
- HTS scalable formats: 96-, 384-, 1536-well

CORNING

Cell line	ATCC Cat. No.	Tumor Type	Medium	Spheroid Morphology
BT-474	HTB-20	Human breast/duct carcinoma	RPMI/10% FBS	Tight
A549	CCL-185	Human lung carcinoma	F-12K/10% FBS	Tight
HEK-293	CRL-1573	Human embryonic kidney	DMEM/10% FBS	Tight
5/9m alpha 3-18	CRL-10154	Hamster (CHO-K1 derived), M-CSF production	DMEM/10% FBS	Aggregate
DU-145	HTB-81	Human prostate carcinoma	DMEM/10% FBS	Tight
IMR-32	CCL-127	Human brain neuroblastoma	DMEM/10% FBS	Aggregate
Detroit 562	CCL-138	Human pharynx, SCC	DMEM/10% FBS	Tight
MCF7	HTB-22	Human breast adenocarcinoma	DMEM/10% FBS	Aggregate
PANC-1	CRL-1469	Human pancreatic carcinoma	DMEM/10% FBS	Tight
Hep G2	HB-8065	Human hepatocellular carcinoma	DMEM/10% FBS	Aggregate
U-2 OS	HTB-96	Human bone osteosarcoma	McCoy's 5a/10% FBS	Tight
HCT 116	CCL-247	Human colon carcinoma	McCoy's 5a/10% FBS	Tight
HT-29	HTB-38	Human colon adenocarcinoma	McCoy's 5a/10% FBS	Tight
PC-3	CRL-1435	Human prostate adenocarcinoma	F-12K/10% FBS	Loose
MDA-MB-231	HTB-26	Human breast adenocarcinoma	L-15/10% FBS	Aggregate

FALCON AXYGEN PYREX

ultraHTS goes 3D:

3D spheroid microplates in 1536-well format

Madoux, et al., 2017 SLAS Disc. 22:516.

3D spheroid cytotoxicity assay characterization

Madoux, et al., 2017 SLAS Disc. 22:516.

FALCON AXYGEN PYREX

Identification of cardiac glycosides inhibiting adenocarcinoma cells carrying oncogenic KRAS mutations

BxPC-3-KRASWT cell line

FALCON

CORNING

- Previous screening efforts relied on 2D cell culture, which oversimplified *in vivo* conditions
- 3D spheroid-based primary screening assay for HTS small molecule screening
- 3D screening approach enables assay conditions more closely reflecting cell environment *in vivo*

"Identified a cardiotonic glycoside, Proscillaridin A, as a potent and selective inhibitor of KRAS mutant cells...

...Proscillaridin A would not have been identified as a selective hit in a 2D assay, illustrating the utility of the spheroid-based 3D platform to uncover new biology".

Kota, et al., 2018, Oncogene online May 2018.

PYREX

AXYGEN

3D heptocell spheroids and screening assays

2D vs. 3D primary human hepatocyte (PHH) cell culture

CORNING

FALCON AXYGEN

PYRE)

3D architecture of liver tissue

- 2D culture systems play a pivotal role in research; however, classical 2D culture systems do not reflect liver complexity.
- 3D culture systems sustain the cell viability, maintain *in vivo* phenotypes, genomic & proteomic expression profiles.
- Compared to other 3D systems, spheroids require fewer cells, are technically easier, and adaptable to HTS.

DILI - a leading cause for drug attrition & clinical failure

Among drugs withdrawn due to toxicity, 26% are attributed to DILI

Drugs Withdrawn Due to Toxicity (1990-2010)

Building a 3D liver cell spheroid model

Corning[®] Spheroid Microplates

-

Cryopreserved PHH

3D Liver Spheroid

- Establish PHH spheroid culture protocol
- Develop 3D liver toxicity assay

Seeding density, spheroid size, and ATP levels

Day 7 Spheroid

Spheroid Viability Measurement

H&E Staining of a Day 8 PHH Spheroid (1000 cells/ spheroid)

- Spheroid morphology & sizes routinely monitored.
- Bioluminescent ATP assay for viability performed in same spheroid microplates.
- Single spheroids form with seeding densities <5K cells/well on 96-well spheroid microplate.

PHH spheroids maintain drug metabolic activities

10 spheroids = 10 K cells

Time 0

Lot 299 PHH Spheroid CYP3A4 Activity Testosterone pmol/e6 cells/min) .0007 .0007 .0009 .0000 .0009 .0000 .0000 .0000 .0000 .0000 .0000 .000 600.0

Day 6

Day 12

Day 17

Day 10

Spheroid size & morphology of liver spheroids is stable during long-term culture

CORNING | FALCON AXYGEN

PYREX

Spheroid size & morphology of liver spheroids is stable during long-term culture

Testing DILI compounds: 3D PHH spheroids vs. 2D PHH monolayer

DILI Severity Category	Compound	C _{max} (μΜ)
1. Severe	Amiodarone	5.3
	Bosentan	7.4
	Nefazodone	4.3
	Tolcapone	47.6
	Troglitazone	6.4
	Trovafloxacin	5.0
	Valproic Acid	693.4
2. High concern	Diclofenac	10.1
	Rosiglitazone	1
3. Low concern	Acetaminophen	165.4
	Chlorpromazine	0.9
	Pioglitazone	2.95
4: Enzyme elevations	Dexamethasone	0.2
5. No DILI	Flumazenil	1.1

- Hepatocytes in 2D culture are short-lived for ~7 days.
- 3D spheroid culture supports long-term hepatocyte viability in culture for up to 4 weeks.
- 3D spheroid culture is capable of testing chronic liver toxicity with repeated dosing.

Example: DILI compound (amiodarone) pharmacology

3D spheroids are more sensitive to DILI compounds vs. 2D PHH culture

FALCON AXYGEN PYREX

3D PHH liver spheroids show superior sensitivity to DILI compound treatment

3D PHH liver spheroids show superior sensitivity to DILI compound treatment (continued)

3D PHH liver spheroids show superior sensitivity to DILI compound treatment (continued)

3D cell culture and imaging

Spheroid formation and growth kinetics

- Cell aggregation occurs within the first few hours of seeding
- Duration of spheroid culture is cell line-dependent

AXYGEN

PYREX

FALCON

- After 48 hours of culture, HT-29 cells form well-rounded, compact spheroids with defined edges
- Begin to show initial signs of a necrotic core after ~80 hours in culture

3D culture and HCS

Wenzel, et al., 2014, Exp Cell Res 323:131.

Spheroid imaging and optical clearing

Representative montage of 20 µm slices from confocal z-stack of DAPI-stained spheroid.

Non-cleared (top rows) and cleared (bottom rows) spheroid.

Number of cells detected at various z-depth through non-cleared (orange) and cleared (blue) HepG2 spheroids.

3D cell culture and organoids

3D cell culture and organoids

Originally, "organoid" referred to primary cultures of tissue fragments separated from the stroma within 3D gels to form organ-like structures

Now encompasses a variety of tissue culture techniques that result in self-organizing, self-renewing 3D cultures

...derived from primary tissue, embryonic stem cells, or induced pluripotent stem cells that have a similar functionality as the tissue from which the cells originate

Simian M and Bissell M, 2017 J. Cell Biol. 216:31.

- Near-physiological models to study human development and diseases
- More advanced organoid cultures will allow for screening platforms for drug discovery that are:
 - More cost-effective than animal models
 - Precise models of human diseases that cannot be recapitulated in animals

iPSCs and organoids

Alhaque, et al., 2018, Trans Roy Soc B 373, 20170216, 2018

FALCON AXYGEN PYREX

Recently established disease models involving human induced pluripotent stem cell (hiPSC)-derived organoid culture systems

Tissue/Organ	Disease Modeled	References
	Zika virus and congenital brain malformations	Kelava et al., 2016 [3]; Dang et al., 2016 [11]; Garcez et al., 2016 [12]; Cugola et al., 2016 [14]
Brain	Primary microencephaly	Kelava et al., 2016 [3]; Dang et al., 2016 [11]; Lancaster et al., 2013 [17]; Li et al., 2017 [20]
	Autism/macrocephaly Alzheimer's disease Parkinson's disease	Mariani et al., 2015 [21] Raja et al., 2016 [22] Monzel et al., 2017 [23]
Liver	Alagille syndrome A1AT deficiency Cystic fibrosis	Guan et al., 2017 [24]; Gomez et al., 2016 [25]
Pancreas	Cystic fibrosis Pancreatic ductal adenocarcinoma Diabetes mellitus	Hohwieler et al., 2017 [26] Huang et al., 2015 [27]; Baker et al., 2016 [28] Kim et al., 2016 [29]
	Host-microbe interactions e.g., human norovirus	Finkbeiner et al., 2012 [30]; Yin et al., 2015 [31]; Ettayebi et al., 2016 [32]
Intestinal	Cystic fibrosis (CF)	Dekkers et al., 2013 [33]; Schwank et al., 2013 [34]
	Colorectal cancer	Drost et al., 2015 [35]; van de Wetering et al., 2015 [36]
	Host-microbial interactions (e.g., Helicobacter pylori)	Finkbeiner et al., 2012 [30]; Huang et al., 2015 [27]; Amieva et al., 2016 [37]; Boj et al., 2017 [38]
Stomach	Cancer	Takasato et al., 2015 [39]
Kidney	Polycystic kidney disease Ovarian cancer	Freedman et al., 2015 [40] Yucer et al., 2017 [41]; Lawrenson et al., 2013 [42]
Urological	Prostate cancer	Gao et al., 2014 [43]; Gao et al., 2015 [44]
Lung	Fibrotic lung disease	Dye et al., 2015 [45]; Barkauskas et al., 2017 [46]; Chen et al., 2017 [47]
Retinal	Leber congenital amaurosis (LCA), Retinitis pigmentosa, Age-related macular degeneration	Wahlin et al., 2017 [48]; Llonch et al., 2018 [49]; DiStefano et al., 2018 [50]

3D cell culture: intestinal organoids

Definitive Endoderm

Representative photomicrographs of definitive endoderm spheroids. SOX17 (middle) and CXCR4 (right) expression with Hoechst nuclei counterstain.

Mid/Hindgut

Representative photomicrographs of mid/hindgut spheroids. CDX2 stained spheroid with Hoechst nuclei counterstain (right).

Screening iPSC-derived intestinal organoids in spheroid plates

- Single organoid per well
- Consistent formation
- Suitable for imaging

2018 Corning Incorporated 43

At our core, we are a cell biology company – leading through our expertise in innovation and manufacturing

Market Leader, Cell Culture Innovator

Acknowledgements

- Hilary Sherman
- Audrey Bergeron
- David Randle
- Hannah Gitschier
- Pilar Pardo
- Feng Li
- Allison Tanner
- Greg Martin
- Vasiliy Goral
- Mark Rothenberg

Corning leads the market in laboratory consumables through a family of respected brands

A portfolio trusted and endorsed by labs and scientists worldwide.

A Corning Brand

FALCON°

A Corning Brand

PYREX[°]

CORNING

A Corning Brand

AXYGEN.

CON EPG